Glial cell line-derived neurotrophic factor promotes the arborization of cultured striatal neurons through the p42/p44 mitogen-activated protein kinase pathway.

نویسندگان

  • Juan M García-Martínez
  • Esther Pérez-Navarro
  • Núria Gavaldà
  • Jordi Alberch
چکیده

Glial cell line-derived neurotrophic factor (GDNF) promotes the survival or differentiation of several types of neurons. This study examines GDNF-induced signal transduction and biological effects in cultured striatal neurons. Results show that GDNF addition to striatal cultures transiently increased the protein levels of phosphorylated p42/p44, but did not change the levels of phosphorylated Akt. GDNF effects on phosphorylated p42/p44 levels were blocked by the mitogen-activated protein kinase (MAPK) pathway specific inhibitors (PD98059 and U0126). Activation of the p42/p44 MAPK pathway by GDNF led to an increase in the degree of dendritic arborization and axon length of both GABA- and calbindin-positive neurons but had no effect on their survival and maturation. These GDNF-mediated effects were suppressed in the presence of the inhibitor of the MAPK pathway (PD98059). Furthermore, the addition of the phosphatidylinositol 3-kinase pathway specific inhibitor (LY294002) blocked GDNF-mediated striatal cell differentiation suggesting that the basal activity of this pathway is needed for the effects of GDNF. Our results indicate that treatment of cultured striatal cells with GDNF specifically activates the p42/p44 MAPK pathway, leading to an increase in the arborization of GABA- and calbindin-positive neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dok-4 regulates GDNF-dependent neurite outgrowth through downstream activation of Rap1 and mitogen-activated protein kinase.

During development of the central and peripheral nervous systems, neurite extension mediated via glial-cell-line-derived neurotrophic factor (GDNF) and its receptor RET is critical for neuronal differentiation. In the present study, we investigated the role of the RET substrate Dok-4 in neurite outgrowth induced by the GDNF/RET signaling pathway. In TGW neuroblastoma cells, which endogenously e...

متن کامل

The Effects of Progesterone on Glial Cell Line-derived Neurotrophic Factor Secretion from C6 Glioma Cells

Objective(s)Progesterone is a steroid hormone whose biology has been greatly studied within the confines of reproductive function. In recent years, the neuroprotective effects of progesterone have attracted growing interest. Glial cell line-derived neurotrophic factor (GDNF), is a neurotrophic factor which plays a crucial role in the development and maintenance of distinct sets of central and p...

متن کامل

Inactivation of mitogen-activated protein kinase signaling pathway reduces caspase-14 expression in impaired keratinocytes

Objective(s):Several investigations have revealed that caspase-14 is responsible for the epidermal differentiation and cornification, as well as the regulation of moisturizing effect. However, the precise regulation mechanism is still not clear. This study was aimed to investigate the expression of caspase-14 in filaggrin-deficient normal human epidermal keratinocytes (NHEKs) and to explore the...

متن کامل

Platelet-derived-growth-factor stimulation of the p42/p44 mitogen-activated protein kinase pathway in airway smooth muscle: role of pertussis-toxin-sensitive G-proteins, c-Src tyrosine kinases and phosphoinositide 3-kinase.

The mechanism used by the platelet-derived growth factor receptor (PDGFR) to activate the mitogen-activated- protein-kinase (p42/p44 MAPK) pathway was investigated in cultured airway smooth muscle (ASM) cells. We have found that pertussis toxin (PTX, which was used to inactivate the heterotrimeric G-protein Gi) induced an approx. 40-50% decrease in the activation of c-Src and p42/p44 MAPK by PD...

متن کامل

Interleukin-1beta induces apoptosis in GL15 glioblastoma-derived human cell line.

Interleukin 1-beta (IL-1beta) induces apoptosis in a glioblastoma-derived human cell line, exhibiting a poorly differentiated astrocytic phenotype. The apoptotic effect was demonstrated by analyzing nuclear morphology, in situ DNA fragmentation, and by ELISA detection of cytoplasmatic nucleosomes. We correlated the degree of differentiation of GL15 cells with the apoptotic response: 1) 4',6-dia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neuroscience research

دوره 83 1  شماره 

صفحات  -

تاریخ انتشار 2006